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Mechanisms for the non-equilibrium segregation of solutes to static grain boundary during 
cooling (quenching-induced segregation) and to moving grain boundary during recrystallization 
(moving-induced segregation) are proposed. For quenching-induced segregation, in 
consideration of the local equilibrium among vacancies, solute atoms and vacancy-solute atom 
complexes, as well as the influence of equilibrium grain-boundary segregation, the theoretical 
dynamic formulae for this non-equilibrium segregation have been derived on the basis of the 
vacancy-dragging mechanism. Theoretical calculations have been carried out for the non- 
equilibrium segregation of boron to austenitic grain boundaries during isothermal holding and 
continuous cooling after heating at high temperature; the results agree well with those obtained 
from experiments. The model has also successfully explained the different behaviours of boron 
segregation during cooling in r and in ?-Fe. For moving-induced segregation, based on the 
interaction between dislocations and the moving boundaries during recrystallization, a dislocation 
relaxation and widening grain-boundary mechanism of solute segregation on moving boundaries 
is proposed. Applying this model, we have calculated the boron segregation on moving 
boundaries during recrystallization in Fe-3% Si alloy; the results of these calculations agree with 
experimental results. 

1. Introduction 
It is known that quenching, strain, radiation and 
recrystallization can induce non-equilibrium segrega- 
tion of solutes to surface and interface. For example, 
quenching-induced non-equilibrium segregation has 
been described for boron in 7-Fe, Ti and Au in Pb 
alloy as well as solute in ZnAi alloy and SnPb alloy 
[1-3]. Strain-induced non-equilibrium segregation of 
boron to grain boundaries is seen in 7-Fe [4]. Electron 
radiation-induced non-equilibrium segregation is seen 
in Cu in Ni-2% Cu alloy, and Si in Cu-2% Si alloy 
[5]. Recently, an unusual distribution of solute on 
moving grain boundaries or recrystallized boundaries 
has been reported [4, 6]. 

Quenching- and strain-induced segregation have 
been attributed to diffusion of vacancy-solute com- 
plexes along vacancy gradients to the grain boundary, 
the diffusion resulting from the super-saturation va- 
cancies (produced with quenching or deformation) 
annihilated at grain boundaries - -  a vacancy-solute 
complex (or vacancy-dragging) mechanism [3]. It is 
thought that the occurrence of radiation-induced se- 
gregation resulted in the annihilation of point defects 
(vacancies, interstitials and small defect clusters) at 
sinks. Vacancy-solute complex diffusion, inter- 
stitial-solute complex diffusion and inverse Kirken- 
dall effects were thought to be the main mechanisms 
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leading to radiation-induced segregation. Concerning 
the mechanism of moving-induced segregation, few 
theoretical studies have been undertaken. 

The aims of this work are as follows. (i) The va- 
cancy-solute complex mechanism of non-equilibrium 
segregation is investigated further, and general diffu- 
sion equations involving vacancy, solute and complex 
diffusion are obtained. (ii) The behaviour of the recrys- 
tallized grain boundary is also studied, and a mechan- 
ism for the non-equilibrium segregation of solute 
atoms on the moving boundary is proposed. (iii) The 
two models are applied to the following two systems: 
non-equilibrium segregation of boron to grain bound- 
aries during cooling in 7-Fe [1, 7]; and boron segrega- 
tion on moving grain boundaries during recrystalliza- 
tion after deformation at 1000 ~ in Fe-3% Si alloy. 

2. Vacancy-solute complex mechanism 
2.1. Model 
Quenching, deformation and radiation can produce 
non-equilibrium vacancies. If Eb > kT (  where Eb is 
the binding energy of vacancy and solute atom), there 
exist stable vacancy-solute complexes in crystals. The 
complex diffusion to the grain boundary, along with 
the supersaturation vacancy annihilation at the grain 
boundary, can induce non-equilibrium segregation of 
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solute to grain boundary. Here we study quenching- 
induced non-equilibrium. At a temperature T, there 
exists a certain equilibrium concentration of free va- 
cancy C~ q in a crystal given by 

CeV q = Kv exp(Ev/kT)  (1) 

where Ev is the formation energy of a vacancy and 
Kv is the entropy term. For  a binary alloy system, 
vacancy(V)-solute(B) complexes (VB) will be formed 
by the equilibrium reaction V + B = VB. The com- 
plex equilibrium concentration Cva is 

CvB = Ko Cv CB exp(Eb/kT) (2) 

where Cv and C~ are concentrations of vacancy and 
solute, respectively, E b is the binding energy of solute 
and vacancy, and Ko is a constant. The total solute 
concentration in alloy is CB + Cw.  As shown in 
Fig. la, at a high temperature T1 the concentrations of 
species V, B and VB in crystal are homogeneously 
distributed at equilibrium levels. When the alloy is 
quenched to and isothermally held at a relatively low 
temperature T (Fig. lb), the supersaturated vacancies 
will be annihilated at grain boundaries, causing the 
decomposition of complex there. Thus along with the 
vacancy gradient a complex gradient is developed, and 
the complexes move to grain boundaries, enriching 
the solute there. In the meantime a solute gradient is 
set up at the opposite direction of the complex gradi- 
ent, the free solute will diffuse away from grain bound- 
aries in a back-diffusion process. Non-equilibrium 
segregation on grain boundaries will arise if the solute 
enrichment process dominates the back-diffusion pro- 
cess. With the prolongation of the isothermal holding 
time at temperature T, the segregation increases at 
first due to the annihilation of supersaturated va- 
cancies, and then decreases when the back-diffusion 
process becomes dominant. 

It is suggested that in the process of non-equilib- 
rium segregation the changes in concentrations of V, 
B and VB in a local region result not only from the 
diffusion of these species driven by their concentration 
gradients, but also from the complex formation and 
decomposition reactions to keep the equilibrium 
among these species in this region. Supposing F is the 
rate of complex decomposition, according to Fick's 
Second Law and conservation of matter, we find: 

OCv~ 

~t 
- -  - DvBV2Cw - F 

~Cv DvV2Cv = F (3) 
Ot 

OC~ D~V2CB 
Ot 

= F 

where Dv, DB and DvB are diffusion coefficients of 
vacancy, solute and complex, respectively. 

According to the literature [8], the rate (F) of com- 
plex concentration change resulting from the reaction 
V + B = VB of the three species at local region is 

F = (R~Dv + R2D~)(CBCv C ~ )  

GB 
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Figure 1 Schematic drawing of concentration distribution of va- 
cancy, solute and vacancy-solute complex near grain boundary 
(GB). (a) At temperature T1; (b) quenched to and held at temper- 
ature T. 

where K = Koexp(Eb/kT),  and R1 and R2 are con- 
stants relating to the properties and configuration of 
the complex. 

Substituting F into Equation 3, we obtain 

c~CB 

Ot 

OCv 

~t 

OCvB 

~t 

- D~V2Cn - (R1Dv + R2DB) 

-- DvV2Cv - ( R I D  v + R2DB) 

-- D v B V 2 C v B  + (R1Dv + R 2 D B )  

Equations 4-6 are the general forms of vacancy and 
interstitial atom diffusion equations. It is found that 
the diffusion process of vacancy and interstitial are 
coupled through a complex reaction. When the bind- 
ing between interstitial and vacancy is very weak, 
there are no thermal stable complexes in the crystal. 
Thus the complex cannot be treated as a diffusion 
unit. In this case, K = K 0 = Z (Z is the number of the 
nearest atoms), C w  = ZCvCn.  Substituting these two 
equations into Equations 4 and 5, Equations 4 and 
5 become the diffusion equations in Fick's Second 
Law. When the binding is strong, the effect of com- 
plexes cannot be neglected, and the diffusion of three 
species is coupled through a complex reaction. The 
degree of influence is determined by the binding en- 
ergy E b and the rate of complex change F. In the 
extreme case, the rate of complex formation and dis- 
sociation is so fast, the reaction V + B = VB can al- 
ways maintain local equilibrium. Of course, in prac- 
tical diffusion processes, this reaction can not main- 
tain equilibrium absolutely. But if the time of the 
reaction reaching equilibrium is much less than the 
diffusion time in the overall system, it is reasonable to 
consider that the reaction always maintains local equi- 
librium in the process of diffusion. In this case, Equa- 
tions 4-6 become Equations 7-9 

OC~ OCw 
- -  + - DnVzCB + DvBV2CvB (7) 

& c3t 
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~?Cv CvB 
+ - DvV2Cv + DvBVZCv8 (8) & & 

Cv~ = K CvCo (9) 

2.2. Calculation of quenching-induced 
segregation of boron in y-Fe 

Equations 7-9 can be applied to calculate the quench- 
ing-induced non-equilibrium segregation of boron to 
grain boundary in 7--Fe. According to Karlsson [9], 
for boron in y-Fe the time of the reaction V + B = VB 
to reach the equilibrium state is 

A t 0 -  (DvDo)X/2 

where Va is the atomic volume in the crystal. Thus 
Equations 7 and 8 can be used to describe the boron 
non-equilibrium segregation in 7-Fe with the condi- 
tion that the Ato is a negligible quantity compared 
with the time of the whole diffusion process. In prac- 
tical calculation through the finite difference method, 
this condition is that the time increment At must be 
larger than A to. In the present work, this condition 
can be met for the calculation of boron segregation at 
austenite grain boundaries above 600 ~ 

For  a specimen heated at a temperature T1, then 
quenched to and isothermally held at a temperature T, 
the boundary and initial conditions for the calculation 
are given as follows (see Fig. 1). 

(i) The vacancy concentration in the region close to 
grain boundaries is always kept at its thermal equilib- 
rium value C~q(T) determined by Equation 1 at tem- 
perature T; that is, Cv[x=o = c ~ q ( T ) .  

(ii) Taking account of the equilibrium grain-bound- 
ary segregation, the solute concentration at grain 
boundaries (CB, eoB in Fig. 1) can be expressed as 
:~'(Co+ Cvs)rx:o, where ~ is the equilibrium se- 
gregation factor of the solute and is a function of 
temperature. Assuming the width of the grain bound- 
ary (d) is very narrow, taken as 1.0 nm in the following 
calculation, we find 

O~(Co + Cvo)[x:o (d/2) = (DoCo + DvoCvB)]x=o 

(lO) 

(iii) Homogeneous distribution of the three species 
in the matrix is considered as an initial condition. The 
total vacancy concentration (Cv + Cvo), as well as the 
total solute concentration (Co + Cvo) are equal to the 
values at T1. Using the equilibrium relation of Equa- 
tion 2 at T, the initial values of Cv, Co and Cv~ can be 
obtained. 

According to the mechanism suggested above, the 
segregation of boron to austenite grain boundaries is 
calculated using a computer. The parameters used are 

Dv (m 2 s-  1) [10, 1 ~] 1.4 x 10 s exp(1.4/kT) 

DB (m 2 s -1) [12] 2 x 10-Vexp( -- 1.15/kT) 

Dvo (m s s -1) [13, 14] 2 x 1 0 - 6 e x p ( - 1 . 1 5 / k T )  

Cv q [14, 15] 4 . 5 e x p ( -  1.4/kT) 

Eb (eV) [13, 16] 0.5 

Ko [9, 17] 4 

[18] exp(0o42/kT) 

d (nm) [19] 1 

The initial total B concentration is 20 p.p.m, and the 
grain size is 40 ~tm. 

A finite-difference method is used for the numerical 
calculation, in which the increment of the distance (x) 
from a grain boundary is 

AX = 0.25~tm(~>720~ 0 . 0 7 g m ( < 7 2 0 ~  

To ensure the convergence of solution, the time in- 
crement is given by 

(AX) ~ 
A t =  

2 • max(DvDBDv.) 

In order to make comparisons with the experimental 
results by particle-tracking autoradiography (PTA), 
the enrichment factor of grain-boundary segregation 
is defined as I = ( C g  b - -  Cg)/Cg, where C g  b is the total 
solute concentration at a grain boundary region, 
which includes the grain boundary per se and the area 
with 2.5 gm width adjacent to it. The Cg is that interior 
to the grain. For simplicity, as the temperature is 
below 630 ~ the diffusion process is neglected in the 
calculation as the diffusion species concerned can 
hardly move at those temperatures. Thus, if the heated 
temperature is lower than 630 ~ the segregation in 
the specimen cooled to room temperature is same as 
that at the heated temperature. The calculation results 
are detailed below. 

2.2. 1. Boron segregation during isothermal 
holding 

The grain boundary segregation of B as a function of 
isothermal holding time at 1000~ after quenching 
from 1200~ has been calculated (shown in Fig. 2a), 
which can be compared with the experimental result 
measured by PTA (Fig. 2b [7]). It is found that with 
the prolongation of isothermal holding time, the se- 
gregation intensifies to a maximum and then declines. 
The peaks appear at about 3 s on both the calculation 
and experimental curves. 

2.2.2. Relationship between segregation and 
cooling rate during continual cooling 

The calculation result for the grain-boundary segrega- 
tion of B varied with cooling rate is given in Fig. 3, 
which shows that after heating at 1000~ as the 
cooling rate reduces the segregation increases, but 
then decreases at relatively lower cooling rates, and 
a maximum appears at about 10~ s -I .  In fact, by 
means of secondary ion mass spectrum (SIMS) and 
atom probe (AP), Karlsson et al. [20] found that the 
strongest enrichment occurs at intermediate cooling 
rates (around 13 ~ s - 1) for 316L austenitic stainless 
steels. 
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Figure 2 Boron segregation at austenite grain boundary as a func- 
tion of isothermal holding time at 1000~ after quenching from 
1200 ~ (a) calculation result; (b) experimental result. 
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Figure 3 Calculation of boron segregation at austenite grain 
boundary as a function of cooling rate after heating at 1000 ~ 

2.2.3. Boron segregation after quenching 
from different temperatures 

The influence of heating temperature on the grain 
boundary segregation of B in a continuous cooling 
test has been experimentally measured in Fe-30 % Ni 
alloys (shown in Fig. 4b 1-9]), and the corresponding 
calculation result is given in Fig. 4a. Both results show 
that at usual cooling rates there exists a minimum 
segregation at a certain quenching temperature, re- 
ferred to as the transition temperature. The equilib- 
rium or non-equilibrium segregation is dominant 
when the quenching temperature is below or beyond 
the transition temperature, respectively. Contrary to 
the equilibrium segregation, the non-equilibrium se- 
gregation is enhanced as the quenching temperature is 
increased. The non-equilibrium segregation formed 
during cooling is sensitive to the cooling rate. The 
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Figure 4 Boron segregation at austenite boundary as a function of 
quenching temperature at different cooling rates. (a) Calculation 
result; (b) experimental result. 

transition temperature goes up as the cooling rate 
increases, and at an infinitely high cooling rate the 
non-equilibrium segregation will be completely inhib- 
ited and the segregation exclusively dependent on the 
equilibrium segregation formed during heating. 

A good fit of the theoretical calculations to the 
experimental results demonstrated the aptness of the 
model. As the equilibrium segregation has been con- 
sidered in the boundary conditions (Equation 10), the 
segregation behaviour including equilibrium and non- 
equilibrium segregation is comprehensively described 
by these dynamic equations (Equations 7-9). 

2 . 3 .  D i s c u s s i o n  
It can be seen that in this model DvB > DB and 
E b > kT are necessary conditions for the occurrence 
of the non-equilibrium segregation induced by 
quenching. The experimental results, which show that 
there is non-equilibrium segregation of boron to grain 
boundaries in 3'-Fe but not in ~-Fe [21, 22], may be 
explained with this model. The diffusivity of boron 
and vacancy in ~-Fe [12, 21] is shown in Fig. 5. It can 
be seen that boron diffusivity is greater than vacancies 
in the experimental temperature range used in [22]. 
Thus it is difficult to imagine that the complex (boron 
and vacancy) diffusivity will be greater than that of 
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Figure 5 Diffusivity against 1/T(K) for boron and vacancy in ~-Fe. 
D v = 2.45 x 10-Sexp( - 1.24/kT); D B = 100exp( - 2.67/kT). 

boron. On the other hand, according to the theoretical 
calculation [21], the binding energy between boron 
and vacancy Eb in ~-Fe is less than 0.091 eV, which is 
much less than Eb (0.51 eV) [13, 16] in 7-Fe. Accord- 
ing to the above model, we can expect that there is no 
boron non-equilibrium segregation to grain bound- 
aries in ~-Fe, and the experimental results prove this 
point. 

3. Mechanism of non-equilibrium 
segregation of solute to moving 
grain boundary during 
recrystallization 

3.1. Model  
It has been shown that the segregation of boron at 
moving grain boundary during recrystallization in 
Fe-3 % Si is stronger than the segregation on static 
grain boundary at the same temperature [23]. This 
type of solute segregation on the moving boundary 
cannot have been properly interpreted by the existing 
theories of solute segregation to moving boundaries. 
According to the solute drag theory of Cahn 1-24], the 
solute segregation on moving boundaries is not higher 
than the equilibrium segregation estimated by 
McLean's equation [25] at the same temperature. 

A relaxation mechanism of dislocation disappear- 
ing in moving boundaries seems able to account for 
this perversive segregation. During the recrystalliza- 
tion process, the new grain boundaries will move 
toward the high dislocation density (PA) areas, and 
leave regions with low dislocation density (Pa) behind 
them (Fig. 6). This means that a large number of 
dislocations will be annihilated in the moving bound- 
aries during recrystallization. The experimental results 
[-26] have indicated that the process of dislocation 
annihilation in grain boundaries (Fig. 7) need an ap- 
preciable time (relaxation time, ~). During this time ~, 
the dislocation incorporated in a boundary will give 
the boundary an extra distortion area at the position 

-6 

D 

Co 

D 

B V , ~  A 
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Co 

Figure 6 Schematic diagram of boundary migration during recrys- 
tallization. 9a ~> 9A' 9A, dislocation density in region A; 9B, disloca- 
tion density in region B; D, Dislocation; Co, boron concentration in 
the matrix; CVA, vacancy concentration in region A; CvB , vacancy 
concentration in region B. 

where the dislocation enters, and the local boundary 
thickness will increase (Fig. 7 illustrates a lattice dis- 
location annihilation in a grain boundary). The in- 
crease in the moving boundary width leads to a bigger 
area that solute atoms can segregate to. 

Fig. 8 illustrates solute atom free energy and dif- 
fusion coefficient distribution across the moving 
boundary. In Fig. 8, 6 is the width of the moving grain 
boundary, and Up = Fg - Fgb is the binding energy of 
solute segregation to grain boundary. Dg and Dgb are 
the diffusion coefficient of solute in grain boundaries 
and interior grains, respectively. 

Assuming that a length of dislocation entering into 
boundary leads an increment (d,) of average width of 
unity area boundary during ~, then the width of the 
moving boundary, 6, is 

6 = do + (PB - PA )V'cd~ 

where V is the boundary velocity, do is the static 
boundary width, and 9B and 9A are the dislocation 
density in deformed grains and new grains, respect- 
ively. Because PB >> PA (PB --: P)' 

6 = do + p Vzd~ 

However, the increasing width does not necessarily 
mean an increase of segregation. As in Cahn's theory 
1-24] (note: in Cahn's treatment the width of moving 
boundary is same as the static boundary) the solute 
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Figure 7 Schematic diagram to illustrate the model of dislocation 
delocalization in a grain boundary [37]. 

D 

distribution across the moving boundary of Fig. 8 is 
shown in Fig. 9. 

In order to compare with the experimental result 
[23] which is the ratio of average solute concentration 
in the boundary area of W ( W  = 6.42 lam [23]) width 
to the concentration in grain, we calculated the aver- 
age concentration Cgb of solute in the boundary area 
of W (5 < W) [21, 24]. Assuming b/5 < 1, then 

Co Og b (e~_~ vb 
Cg b ~- C O -t- ~ - - ~ - .  D,b - -  1) 

x UoDg (1 

1 V b k T j  

(11) 

_ e-VS/D*b) 

For Uo > kT(which means that the solute atoms have 
a considerable equilibrium segregation on the static 
boundary), and assuming b is a small quantity, then 
Equation 11 is simplified to 

Cgb - 1 + D g b ( e k ~ _  1)(1 - - e - D ~ )  (12) 
Cg WV" 

It can be seen that when V--* oo, Cgb/C 0 ~ 1, it 
means there is no segregation on the moving bound- 
ary with high velocity. When V --* 0, 

Cg b 1 Vo 
- 1 + ~ ( e  k ~ 7 -  1)do ( V  = 0 - - . 5  = do) 

Cg 

which is the equilibrium segregation value of solute on 
static boundaries. From Equation 12 we can find that 
when Og b >~> V5 there is a strong segregation on the 
moving boundary, even stronger than the equilibrium 
segregation on static boundaries. Og b >~> VS, Equa- 

(13) 

tion 12 becomes 

Cgb - 1 + --1w(ekU~ - -  1)8 
Cg 

5 = do + p V'cd~ 

Cgb 1 Vo 
-- 1 + ~.,(ek~ -- 1)(d0 + pVzdd  

Cg w 

c "  
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Figure 8 Diffusion coefficient and potential of solute atom near and 
at grain boundary. 
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Figure 9 Schematic diagram of concentration profiles for four mi- 
gration rates. 
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Og b ~ V~, which means that the solute atoms can 
follow moving boundaries as an atmosphere (other- 
wise the moving boundaries will break away from the 
solute atmosphere). As the boundary width is in- 
creased (i.e. V is increased) there are more solute 
atoms moving along with the moving boundary, then 
the solute segregation becomes strong. 

3.2. Appl icat ions 
Equation 13 is applied to calculate the boron segrega- 
tion on moving grain boundaries in Fe 3 % Si during 
recrystallization at 1000 ~ In the case of equilibrium 
segregation of boron on static grain boundaries at 
1000~ the enrichment ratio (K eq) of the average 
boron concentration in the boundary area of 6.42 pm 
width (W) to the boron concentration interior grain is 
[22] 

K eq ----- 1 + [ d o / W ] * [ e x p ( U o / k T )  - 1] = 1.1 

(14) 

From the above equation and Equation 13, it can be 
found that the enrichment ratio Cgb/Cg (K MG) on the 
moving boundaries can be easily obtained once 3 is 
known. 5( = do + pVzd~) is calculated as follows. 

(i) The bulk density P of dislocation in deformed 
grain is about 1.5 x 1011 cm -2 [27]. 

(ii) The boundary velocity is ~ 2.8 x 10 - 4  eros  - t  

[273. 
(iii) The dislocation core region is suggested to be 

the same as the boundary region for solute segrega- 
tion. ro is the radius of the dislocation core region. 
During the process of extrinsic dislocation (unit 
length) annihilation at moving boundary, the increas- 
ing width of the unit area boundary, dr, can be ob- 
tained from the following equation 

d~* 1 c m ,  1 cm 2 = nr2o , 1 cm 

ro = 1.5ao [27, 28], ao = 0.2864 nm 

de = 5.798 x 10 -z5 cmcm -~ 

(iv) Numerous transmission electron microscopy 
investigations have shown that the annihilation of 
lattice dislocations embodied into grain boundaries is 
a dislocation delocalization process, and the delocal- 
ization is controlled by atom diffusion [29-32]. It was 
found that when the width of the dislocation core 
along boundary was delocalized to 100 nm, the lattice 
dislocation can be thought to disappear completely. 
Thus we obtain the relaxation time �9 of dislocation 
disappearance [31] 

( O g ' c )  1/2 = 100 n m  

Here the process of delocalization is probably con- 
trolled by self-diffusion in the grain. The self-diffusion 
coefficient Dg in ~-Fe is 1.67exp ( - 6 1 . 3 k c a l  
m o l - l k T )  emZs -1 [33]. Thus �9 = 2 s. 

(v) do = 3ao = 8.592 x 10 -8 cm 
Substituting the above parameters into Equation 13 
and combining Equation 14, we obtain boron segrega- 
tion on moving grain boundaries during recrystaltiza- 
tion in ~z-Fe deformed 20% at 1000 ~ 

K MG = C g b / C g  = 1.7 

The above result agrees well with the experimental 
value of 1.6 [23]. 

3.3. Discussion 
In the above model, the necessary conditions to pro- 
duce stronger segregation of solute atoms on moving 
boundaries during recrystallization than on static 
boundaries are Uo > k T a n d  Dgb >> V6. According to 
these two conditions, we can expect that N, C, P and 
B will have perversive segregation on moving bound- 
aries during recrystallization in steels, as does B in 
Fe-3 % Si. The direct and/or indirect experiment res- 
ults [4, 34] have already proved the strong segrega- 
tion of P, C and B on moving boundaries in austenite 
steels. 

It should be noted that the above model is simple. 
Further experimental and theoretical studies on this 
model are needed. In further studies, the different 
binding energies of solute atoms with static bound- 
aries and with moving boundaries, the different struc- 
tures of static boundaries and moving boundaries, and 
the influence of other solute atoms on the solute segre- 
gation, should be taken into consideration. Experi- 
ments [35, 36] have shown that the energy of moving 
boundaries and solute behaviour (such as diffusion) is 
considerably different from that on static boundaries. 
Moreover, the interactions of lattice dislocation with 
static and moving boundaries should be studied in 
more detail. 

4. Conclusions 
1. A model for the solute non-equilibrium segregation 
to grain boundaries during quenching has been sug- 
gested. The dynamic process of the segregation can be 
described by the following equations: 

c~C8 
Ot 

OCv 
& 

OCvB 
& 

- DBV2CB - (R1Dv + R2D~) 

- DvV2Cv - (R1Dv + R 2 D B )  

- -  DvBV2CvB + (R1Dv + R 2 D I s )  

Applied to boron segregation to austcnite grain 
boundaries, these theoretical calculations agree well 
with experimental results. The model interprets satis- 
factorily the different behaviour of boron segregation 
in 7-Fe and ~-Fe. The essential conditions of quench- 
ing-induced segregation are Eb > k T  and DvH > D~. 

2. The non-equilibrium segregation of solutes to 
moving grain boundaries during recrystallization res- 
ults from the increasing width of moving boundaries, 
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at which a large number of lattice dislocations disap- 
pear during recrystallization. The width of recrystal- 
lized boundaries is 

8 = do + pV'~d~ 

The essential conditions for non-equilibrium segrega- 
tion of solute to recrystallized boundaries to occur are 
Uo > k T a n d  Dgb ~ VS. Then the enrichment ratio on 
recrystallized boundaries is 

Cgb 
Cg 

Uo 
- 1 + ( e k ~ -  1)(do + p Vzd~) 
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